Practice questions - answers

 $Cr(s) + Fe^{2+}(aq) \rightarrow Cr^{3+}(aq) + Fe(s)$

(unbalanced)

Step #1: What colour are the 4 species?

Step #2: Balance the half equations

Step #3: Identify which half reaction is oxidation and which is reduction – and WHY you knew this.

Step #4: Combine the half equations to produce the overall balanced equation. Remember the number of e^- in each side MUST be the same so that they

cancel out.

Write a description of what would be observed at the start and end of this reaction:

A piece of shiny light grey metal, Cr was added to a pale green solution, the colour being due to $Fe^{2+}(aq)$; a dark grey solid, Fe, was seen and the solution turned a dark green due to the formation of $Cr^{3+}(aq)$.

Unbalanced half equations:	$Fe^{2+} \rightarrow Fe$	Cr → Cr ³⁺	Species Colours
Balanced half equation:	Fe ²⁺ + 2e ⁻ → Fe	$Cr \rightarrow Cr^{3+} + 3e^{-}$	Fe ²⁺ =pale green solution
Oxidation / Reduction:	reduction	oxidation	Fe = dark grey metal
This is because	Each Fe ²⁺ ion has gained 2 electrons	Each Cr atom has lost3 electrons	Cr = light grey metal Cr ³⁺ = green
Overall equation:	3Fe ²⁺ + 2Cr → 3Fe + 2Cr ³⁺		solution

 $HCOOH(aq) + MnO_4^{-}(aq) \rightarrow CO_2(g) + Mn^{2+}(aq)$

(unbalanced)

Step #1: What colour are the 4 species?

Step #2: Separate out the species and balance the half equations

Step #3: Identify which half reaction is oxidation and which is reduction – and WHY you knew this.

Step #4: Combine the half equations to produce the overall balanced equation. Remember the number of e- in each side MUST be the same so that they cancel

out.

Write a description of what would be observed at the start and during/end of this reaction:

Colourless methanoic acid is added to purple permanganate, the purple colour being due to $MnO_4^{2-}(aq)$; the colour disappears as colourless $Mn^{2+}(aq)$ ions are formed, and bubbles of a colourless gas are seen. The gas is carbondioxide

Unbalanced half equations:	$MnO_4^- \rightarrow Mn^{2+}$	HCOOH → CO ₂	Species Colours
Balanced half equation:	$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	$HCOOH \rightarrow CO_2 + 2H^+ + 2e^-$	MnO_4^- = purple solution
Oxidation / Reduction:	reduction	oxidation	Mn ²⁺ = colourless solution
This is because	Each MnO ₄ -ion gains 5 electrons	Each HCOOH molecule loses 2 electrons	HCOOH = colourless solution CO ₂ = colourless
Overall equation:	$2MnO_4^- + 6H^+ + 5HCOOH \rightarrow 2Mn^{2+} + 8H_2O + 5CO_2$		gas

 $H_2O_2(aq) + Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + H_2O(1)$

(unbalanced)

Step #1: What colour are the 4 species?

Step #2: Separate out the species and balance the half equations

Step #3: Identify which half reaction is oxidation and which is reduction – and WHY you knew this.

Step #4: Combine the half equations to produce the overall balanced equation. Remember the number of e⁻ in each side MUST be the same so that they cancel out.

Write a description of what would be observed at the start and end of this reaction:

Colourless hydrogen peroxide solution is mixed with a solution containing pale green $Fe^{2+}(aq)$. The solution turns a pale orange due to the formation of $Fe^{3+}(aq)$. The other product doesn't affect the colour as it is colourless water.

(Rather confusingly bubbles of colourless gas are also seen but this is due to the Fe^{3+} (ag) ions catalysing the decomposition of the remaining H_2O_2)

Te (ad) forth datalysing the decomposition of the remaining 11202)				
Unbalanced half equations:	$Fe^{2+} \rightarrow Fe^{3+}$	$H_2O_2 \rightarrow H_2O$	Species Colours	
Balanced half equation:	$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	$2H^+ + H_2O_2 + 2e^- \rightarrow 2H_2O$	Fe ²⁺ = pale green solution	
Oxidation / Reduction:	oxidation	reduction	Fe ³⁺ = pale orange solution	
This is because	Each Fe ²⁺ ion loses one electron	Each H ₂ O ₂ molecule gains 2 electrons	H_2O_2 = colourless solution	
Overall equation:	$2H^+ + H_2O_2 + 2Fe^{2+} \rightarrow 2H_2O + 2Fe^{3+}$		H ₂ O = colourless liquid	

A pinky-brown metal, Cu, was added to some colourless concentrated nitric acid (H^+ and NO_3^- are both colourless ions). The solution turned from colourless to blue, due to the formation of Cu^{2+} and a large amount of brown gas, NO_2 , was released.

Step #1: Identify the species using the observations.

Step #2: Separate them out into two half equations and then balance these half equations

Step #3: Identify which half reaction is oxidation and which is reduction – and WHY you knew this.

Step #4: Combine the half equations to produce the overall balanced equation. Remember the number of e⁻ in each side MUST be the same so that they cancel out.

Unbalanced half equations:	Cu → Cu ²⁺	HNO ₃ → NO ₂	Species Colours
Balanced half equation:	Cu → Cu ²⁺ + 2e ⁻	$H^{+} + HNO_{3} + e^{-} \rightarrow NO_{2} + H_{2}O$ Or $2H^{+} + NO_{3}^{-} + e^{-} \rightarrow NO_{2} + H_{2}O$	HNO ₃ = colourless liquid Or NO ₃ =
Oxidation / Reduction:	oxidation	reduction	colourless
This is because	Each Cu atom loses 2 electrons	Each HNO₃ gains one electron Or each NO₃⁻ gains one electron	solution Cu = pinky orange solid
Overall equation:	Cu + 4H ⁺ + 2NO ₃ ⁻ → Cu ²⁻	++ 2NO ₂ + 2H ₂ O	NO_2 = brown gas Cu^{2+} = blue solution

Now for some harder ones.....

Acidified dichromate solution was mixed with hydrogen sulfide gas. A dark green solution formed and a yellow solid.			
Orange dichromate solution Cr ₂ O ₇ ²⁻ (aq) added to colourless H ₂ hydrogen sulfide ga	is S(g),	due to formed	solution is seen Cr ³⁺ (aq) being l and the yellow is sulfur, S(s)
Unbalanced half equation:	$Cr_2O_7^{2-} \rightarrow Cr^{3+}$	$H_2S \rightarrow S$	Species Colours
Balanced half equation:	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	$H_2S \rightarrow S + 2H^+ + 2e^-$	$Cr_2O_7^{2-}$ = orange
Oxidation / Reduction:	reduction	oxidation	→ solution H ₂ S = _ colourless gas
This is because	Each Cr ₂ O ₇ ²⁻ ion gains six electrons	Each H ₂ S molecule loses 2 electrons	Cr ³⁺ = green solution
Overall equation:	$Cr_2O_7^{2-} + 8H^+ + 3H_2S \rightarrow 2Cr^{3+} + 7H_2O + 3S$		S = yellow solid

 SO_2 gas + dilute acidified $Cr_2O_7^{2-}$ solution react together to produce a dark green solution.

Hint: remember that SO_2 and HSO_3^- both react in similar ways to each other and are converted into the sulfate ion SO_4^{2-} unless a yellow solid is observed – which is sulfur, S.

$$SO_2 + Cr_2O_7^{2-} \rightarrow [you \ have \ to \ work \ it \ out]$$

$$SO_4^{2-} + Cr^{3+}$$

Expected observations. Link these to the species involved.

The colourless SO_2 gas reacts with the dichromate solution which is orange due to the $Cr_2O_7^{2-}(aq)$ ions. The observed colour change is because colourless sulfate ions / $SO_4^{2-}(aq)$ are formed as well as $Cr^{3+}(aq)$ and these are green in solution.

Unbalanced half equation:	$Cr_2O_7^2 \rightarrow Cr^{3+}$	$SO_2 \rightarrow SO_4^{2-}$	Species Colours
Balanced half equation:	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	$2H_2O + SO_2 \rightarrow SO_4^{2-} + 4H^+ + 2e^-$	$Cr_2O_7^{2^-}$ = orange
Oxidation / Reduction:	reduction	oxidation	solution $SO_2 = colourless$
This is because	Each Cr ₂ O ₇ ²⁻ ion gains six electrons	Each SO ₂ molecule loses 2 electrons	gas SO ₄ ²⁻ = colourless solution Cr ³⁺ = green
Overall equation:	$3SO_2 + Cr_2O_7^{2-} + 2H^+ \rightarrow 2Cr^{3+} + H_2O + 3SO_4^{2-}$		solution